Lightweight Design is a disruptive concept. We turn it into individual solutions.

Our core competencies at a glance

Consulting, planning and project management: str.ucture offers you solution-oriented service packages ensuring competent and efficient support in the implementation of your lightweight design project. 

Make use of our know-how in all fields of classic lightweight design. Benefit from our proven expertise in the construction of membrane structures, in the design of highly efficient building structures as well as in the development and application of innovative materials for lightweight structures.  

• Structural design
• Form finding
• Calculation and optimisation of complex
   parametric architecture 
• Wind engineering

up

Implementation – individual solutions for challenging construction projects.

Even concerning its proposed aim for sustainable construction, lightweight design demonstrates its enormous potential. From long-span roof structures and parasol constructions to steady-state and mobile supporting structures through to structural components optimised both for structure and material – str.ucture is designing, planning and implementing lightweight projects worldwide and in many different facets.

up

Heading for success – str.ucture seeks international comparison.

up

Pioneering – Innovative Simulation Systems, structural elements and materials for lightweight design.

Innovations are decisive reasons for success. The active involvement of str.ucture in current research projects is therefore of key importance. We pass our advance in knowledge directly on to our clients by means of concrete performance benefits.

Publications and lectures

  • MICHALSKI A, HAUG E., BRADATSCH J., BLETZINGER K.-U. Virtual Design Methodology for Lightweigth Structures, International Journal of Space Structures Vol. 24 No. 4 2009 
  • MICHALSKI, A., P. D. KERMEL, et al. (2011). Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics 99(4): 400-413
  • MICHALSKI, A., HAUG E., WÜCHNER R. BLETZINGER K.-U. (2011) Validierung eines numerischen Simulationskonzeptes zur Strukturanalyse windbelasteter Membrantragwerke, Der Bauingenieur, Band 86, März 2011, S. 129 - 141
  • Validation of the Fluid-Structure Interaction simulation at realscale tests of a 29 m umbrella, , The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23-27, 2010
  • Fluid-Structure Interaction simulation of a 29 m umbrella in comparison with field experiments, A. Michalski, P.de Kermel, E.Haug, R.Wüchner, K.-U. Bletzinger, 1st conference on Multiphysics simulation, Advanced Methods for Industrial engineering, Frauenhofer Gesellschaft, June 2010, Bonn
  • MICHALSKI A., BRITTO D., GELENNE PH., HAUG E. (2012). Computational Wind Engineering of Large Umbrella Structures, 10th UK Conference on Wind Engineering WES 2012
  • Fluid-Structure Interaction simulation of a 29 m umbrella in comparison with real-scale tests, Center for Computational Fluid Dynamics, Prof. Löhner, College of Sciences, George Mason University Washington, 21.Mai 2010
     
  • HERRMANN, M.: Gradientenbeton - Untersuchungen zur Gewichtsoptimierung einachsiger biege- und querkraftbeanspruchter Bauteile, Dissertation, Universität Stuttgart, Institut für Leichtbau Entwerfen und Konstruieren, 2015.
  • HERRMANN, M.; HAASE, W.; SOBEK, W.: Gradientenbetone, DBZ, 59 (2011), 12, 52–54.
  • SOBEK, W.; HERRMANN, M.; BERGMANN, C.; KLAUS, T.; MICHAELY, P.; SCHROTH, J.; SCHENK, J.: Plusenergiehaus mit Elektromobilität – Energieeffizienz an der Schnittstelle zwischen Gebäude und Fahrzeug, Bauingenieur - VDI-Bautechnik Jahresausgabe, 84 (2011), 92–100.
  • HERRMANN, M.; HAASE, W.: Tragverhalten biege- und querkraftbeanspruchter Bauteile aus funktional gradiertem Beton, Beton- und Stahlbetonbau, vol. 108, no. Heft 6, pp. 382–394, Jun-2013.
  • HERRMANN, M.; SOBEK, W.: Gradientenbeton – Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierter Bauteile, Beton- und Stahlbetonbau, vol. 110, no. 10, pp. 672–686, Oct. 2015.
  • HERRMANN, M.; SOBEK, W.: Functionally Graded Concrete – Numerical Design Methods and Experimental Tests of Mass-Optimised Structural Components, Structural Concrete, p. n/a-n/a, May 2016.
  • HERRMANN, M.; SOBEK, W.: Functionally Graded Concrete. Designing Concrete with Multifunctional Material Properties, in Mixed Matters A Multi-Material Design Compendium, Berlin: JOVIS, 2016, pp. 124–133.

  • KNIPPERS, J.; CREMERS, J.;GABLER, M.; LIENHARD, J.: Atlas Kunststoffe + Membranen: Werkstoffe und Halbzeuge, Formfindung und Konstruktion. Hrsg. Institut für internationale Architektur-Dokumentation. München: Edition Detail, 2010
  • LIENHARD, J., SCHLEICHER, S., KNIPPERS, J.: Bio-inspired, flexible structures and materials. – In: Pacheco T. F. et.al. (eds.), Biotechnologies and Biomimetics for Civil Engineering, Springer, 2014
  • LIENHARD, J. (2014): Bending-active structures: form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein. Dissertation, Universität Stuttgart, Institut für Tragkonstruktionen und Konstruktives Entwerfen.
  • LIENHARD, J., KNIPPERS, J. (2015): Textile Hybrids. Journal of the International Association for Shell and Spatial Structures
  • LIENHARD, J., ALPERMANN, H., GENGNAGEL, C., KNIPPERS, J. (2013) Active Bending, a Review on structures where bending is used as a self-formation process. International Journal of Space Structures Vol. 28 No. 3&4 2013, p 187-196 
  • LIENHARD, J., KNIPPERS, J. (2013) Considerations on the Scaling of Bending-Active Structures. International Journal of Space Structures Vol. 28 No. 3&4 2013, p 137-147
  • LIENHARD, J., SCHLEICHER, S., POPPINGA, S., MASSELTER, T., MILWICH, M., SPECK, T., KNIPPERS, J. (2011) Flectofin: a nature based hinge-less flapping mechanism. Bioinspiration & Biomimetics 6 (2011), special issue on Biomimetics of Movement, 045001. 

up